
Page 1

NCR Aloha RAL (v20.0 and later)
Creating an Aloha Compatible Chocolatey Package

Last Updated: February 21, 2024

Overview
RAL now supports the Chocolatey® (Choco) packages mechanism for deploying and installing integrated applications in the
Aloha® least privilege environment. This Choco package mechanism replaces the older proprietary InstallManifest mechanism
that was used to configure integrated applications on the terminal devices.
When a Choco package (.nupkg) is signed and registered in RAL, it shows up in the RAL configuration, and can be activated
for the terminals under RAL's configuration. When the package is active, a package is automatically copied to the terminal and
installed using RAL. Likewise, the inactive package is uninstalled from the terminal if it was previously installed using RAL.

What is Chocolatey and why use it?

Chocolatey is an industry-standard package management solution. Choco packages are a special form of zip file (.nupkg) that
contains the installation instructions along with the files to deploy. Chocolatey runs a PowerShell® script to perform the
deployment activities so that you have access to powerful Microsoft® Windows® commands. It also contains special operations
for .msi and other known installer types.

What is the difference between a RAL InstallManifest file and a Choco package?
This section helps you understand the difference between using InstallManifest and Choco packages.

RAL InstallManifest
A RAL InstallManifest is a list of commands that RAL executes on the terminal device. The InstallManifest commands, such as file
or regasm, act on files and also cause the files to be synchronized from the back-of-house (BOH) using RAL.
The InstallManifest encompasses all file synchronization and terminal requirements necessary to run the integrated application.
The file references in InstallManifest are referenced from the BOH file, copied to the terminal, and acted on locally. The
InstallManifest is only applied once. RAL uses the InstallManifest file time stamp to detect when the file was changed and needs
to be reapplied.

Choco packages
The Choco package is a self-contained package intended to be executed locally. All the necessary configuration and deployment
instructions are contained in the package, along with the application's files for deployment. Chocolatey is a third-party package
management system; therefore, it can be installed directly, outside of the RAL ecosystem.
The package version is part of the package name (by convention). RAL will install the new packages when detected.

Reference: See the Chocolatey package documentation for complete instructions on how to create and maintain
Choco packages.

Note: This does not prevent someone from generating a valid package with malicious content. We also cannot pre-
vent a malicious user from writing to the RAL registry providing the link to the package.

https://docs.chocolatey.org/en-us/

Page 2

Creating an Aloha Compatible Chocolatey Package

Converting existing RAL InstallManifest file to Choco package
The following steps are required to convert an existing RAL InstallManifest file to a Choco package:
1. Create the initial Choco package from the template, choco new.
2. Copy the application files for deployment into the Tools folder.
3. Migrate the InstallManifest commands into PowerShell instructions, inside tools/chocolateyinstall.ps1.
4. Include commands to deploy the application files into the desired locations.
5. Create the deployable Choco package, choco pack.

Chocolatey package layout
You do not deploy your package into the public Chocolatey repository as you will deploy the package locally to the BOH
machine; then, RAL deploys and installs it on the terminal devices.
The naming convention used is lower case letters with or without a dash. For example, aloha-mypackage is an ideal way to
represent a Choco package name.

Creating a Choco package using choco new command
1. Open the PowerShell or Windows Command Prompt.
2. Type choco new <package-name>. For example, choco new aloha-mypackage.
3. Press Enter to execute the command and create the default files for a package. The default files are:

Figure 1 Choco package command execution

Default file Description

.nuspec This file contains the naming and version details for the package.

tools/*.ps1 This is a PowerShell script that Chocolatey uses to perform install or uninstall actions.
• chocolateyinstall.ps1 - Edit this file to perform the necessary install and configuration commands.
• chocolateyuninstall.ps1 - Edit this file to perform specialized uninstall actions (this may not be

needed).

tools The files to be deployed must be included in this folder.

Page 3

Creating an Aloha Compatible Chocolatey Package

Mapping RAL InstallManifest actions into Choco package commands
We explain the InstallManifest and its corresponding actions with some examples in this section.

Applying folder permissions
RAL now uses the AlohaUsers users group to apply permissions to all Aloha users on the system, as required. You can also
specify just the terminal user with $parameters["AlohaUsersGroup"].

Deploy or copy file
You must include myfile.txt in the tools folder of the package.

Installing an msi
You must include myfile.msi in the tools folder of the package.

InstallManifest actions Example of chocolateyinstall.ps1

<Action="dirwrite">c:\Program
Data\MyApplication\Data</
Action>

$parameters = Get-PackageParameters
$alohaUsersGroup = $parameters["AlohaUsersGroup"]
$path = "c:\ProgramData\MyApplication\Data"
$aclEntry = $alohaUsersGroup, "FullControl",
"ContainerInherit,ObjectInherit", "None", "Allow"
$accessRule = New-Object
System.Security.AccessControl.FileSystemAccessRule($aclE
ntry)
$acl = Get-Acl $path
$acl.SetAccessRule($accessRule)
$acl | Set-Acl $path

InstallManifest actions Example of chocolateyinstall.ps1

<Action="file"
TargetDirectory="c:\local\foh
\path\myfile.txt">d:\local\bo
h\path\myfile.txt</Action>

Copy-Item -Path ".\myfile.txt" -Destination
"c:\local\foh\path\myfile.txt"

InstallManifest actions Example of chocolateyinstall.ps1

<Action="msi"
TargetDirectory="c:\local\foh
\path\myfile.msi">d:\local\bo
h\path\myfile.msi</Action>

Copy-Item -Path ".\myfile.msi" -Destination
"c:\local\foh\path\myfile.msi"
$packageArgs = @ {
 PackageName = "My Package Name"
 SoftwareName = "My Software Name"
 FileType = "'msi"
 File = ".\myfile.msi"
 SiletArgs = "/quiet /norestart"
 ValidExitCodes = @(0, 3010, 1641)
}
Install-ChocolateyInstallPAckage @packageArgs

Page 4

Creating an Aloha Compatible Chocolatey Package

Launching a file
You must include myfile.exe in the tools folder of the package.

Registering a C# assembly
You must include myfile.dll in the tools folder of the package. Deploy the file to its intended destination from the tools folder
and then register it.

Building a Choco package for distribution
In the .nuspec file, update the <version>__REPLACE__</version> attribute to apply a default version. With the
ChocolateyInstall.ps1 written and the files for deployment copied into the tools folder, you are now ready to create the
package. This is done with the choco pack command. Even though the <version> attribute is changed, make sure you specify
the version on the command line, incrementing with each release.
The Choco package command depicted in the following screenshot creates the aloha-mypackage.1.0.0.0.nupkg file. Once
this file is signed using nuget sign, the Choco package is ready for distribution.

InstallManifest actions Example of chocolateyinstall.ps1

<Action="exe"
TargetDirectory="c:\local\foh
\path\myfile.exe"
CmdLineParameters="param1
param2 param3">
d:\local\boh\path\myfile.exe<
/Action>

& ".\myfile.exe" "param1" "param2" "param3"

InstallManifest actions Example of chocolateyinstall.ps1

<Action="exe">d:\local\boh\pa
th\myfile.dll</Action>

Copy-Item -Path ".\myfile.dll" -Destination
"c:\local\foh\path\myfile.dll"
$regasm =
"C:\Windows\Microsoft.NET\Framework\v4.0.30319\regasm.ex
e"
& $regasm "c:\local\foh\path\myfile.dll"

Figure 2 Choco package command - version

Page 5

Creating an Aloha Compatible Chocolatey Package

Deploying a Choco package in a RAL environment
An application awaiting RAL to process its package file will write a registry entry to a RAL location on BOH, which communicates
to RAL that the package file exists and where to locate it. RAL synchronizes and executes the choco install command during the
terminal start up, as required. RAL also identifies the package version, which is available as part of the package name, to
determine whether the package is the latest version.
The application must add a REGSZ Value to the designated RAL registry location,
HKLM\SOFTWARE\Wow6432Node\NCR\RAL\Packages, which contains the full path of its manifest file.
The name must match the internal package name. Below is an example of a BOH where RAL is installed:
Key = HKLM\Software\NCR\RAL\Packages
Name = aloha-mypackage
Value = "C:\local\BOH\MyApplication\aloha-mypackage.1.0.0.0.nupkg"

RAL-specific Choco package compatibility requirements
RAL installs Choco packages for internal and third-party applications on the FOH terminals. To be fully compatible with RAL, the
package must support certain Aloha-specific parameters.

Permission Description

AlohaUsersGroup If your package creates users that need access to Aloha folders, you must add the
corresponding users to the user group detailed by the AlohaUsersGroup parameter.
If your package creates resources (such as data folders, registry entries) that the Aloha
application needs to access, the package needs to apply AlohaUsersGroup permissions to
these resources.

AlohaTerminalUser If you need to apply any permissions for the specific Aloha Terminal User, apply that
configuration to the account specified by this parameter. This is only for the resources that
require specific user permissions rather than the group permissions (specified above).
This is not the user running the package installation.

AlohaTerminalType You may need to take different actions based on the device type.
If your package does not need to take any action on a particular terminal type, it should
respond to that parameter by simply returning a success code (usually 0).
FOH — For order entry devices (iber/QS).
AK — For Aloha Kitchen terminal devices.
DEDIS — For dedicated server (for the interface server running on a standalone machine).

 Creating an Aloha Compatible Chocolatey Package

Page 6

© 2024 NCR Voyix. All rights reserved. NCR Voyix — Confidential
Use and Disclose Solely Pursuant to Company Instructions

Important rules for RAL-compatible Choco packages
This section helps you understand some important rules applicable while working with RAL-compatible Choco packages.
• RAL only applies Choco packages to terminal devices (order entry, kitchen, dedicated servers). Choco packages are not

executed on the BOH device, even for Interface Servers–any necessary BOH configuration must be part of your BOH
installation; however, you may consider building a unified package, which is both compatible with FOH and BOH.

• Do not reboot the device from inside the package. Instead set the package reboot return code 3010. RAL will reboot the
device after running all the packages.

• Implement the AlohaTerminalType parameter such that your package can be run on any Aloha device without disrupting its
configuration. For instance, if your application applies only to Order Entry terminals, then if you run on an Aloha Kitchen
device, it must exit as completed status. (If it exits with failure status, then the corresponding action will be retried on every
RAL terminal start up).

• Aloha runs under the terminal auto-log on user, which RAL manages. The specific user name must be unique for each
terminal device. Since the user name is configurable, the exact user name will not be known when you create your package;
therefore, it cannot be hard coded. If you need to apply additional permissions to your application, use the
AlohaTerminalUser parameter to obtain the name of the exact terminal user account.

• Add the Aloha users in to the AlohaUsersGroup to manage the terminal user permissions. This is to grant permission to the
Aloha folders. This is more efficient than applying Aloha permissions to every necessary user. If your application has a
separate user account (for instance, if you are installing a Windows service) it should be added to the AlohaUsersGroup.

• If your product needs files in the Aloha\Bin folder for the terminal, then the BOH installer (or package) must put these files
in the Aloha\Bin folder on the BOH machine. This is required because RAL purges the terminal Aloha\Bin folder to match
the BOH Aloha\Bin folder. This means you may need to install the package on the BOH for your product, even if there is no
direct BOH functionality.

RAL-compatible chocolateyInstall.ps1 template
$packageName = $env:chocolateyPackageName
$packageVersion = $env:chocolateyPackageVersion
$toolsPath = Split-Path $MyInvocation.MyCommand.Definition
$parameters = Get-PackageParameters
try
{
 $termType = $parameters["AlohaTerminalType"]
}
catch
{
 exit 1
}
try
{
 $alohaUsersGroup = $parameters["AlohaUsersGroup"]
}
catch
{}
try
{
 $alohaTerminalUser = $parameters["AlohaTerminalUser"]
}
catch
{}

	NCR Aloha RAL (v20.0 and later)
	Overview
	What is Chocolatey and why use it?
	What is the difference between a RAL InstallManifest file and a Choco package?
	RAL InstallManifest
	Choco packages

	Converting existing RAL InstallManifest file to Choco package
	Chocolatey package layout
	Mapping RAL InstallManifest actions into Choco package commands
	Building a Choco package for distribution
	Deploying a Choco package in a RAL environment

	RAL-specific Choco package compatibility requirements
	Important rules for RAL-compatible Choco packages
	RAL-compatible chocolateyInstall.ps1 template

